
 

 

1 

Plant Archives Vol. 21, Supplement 1, 2021 pp. 715-723 e-ISSN:2581-6063 (online), ISSN:0972-5210 

  

 

 

Plant Archives 
 

Journal homepage: http://www.plantarchives.org 
doi link : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.108 

  

 

BIOCHEMICAL STUDY OF GREWIA  SPECIES UNDER  DROUGHT CONDITIONS  
 

P. Sharma and K. Agarwal 

 Department of Botany, IIS (deemed to be University), Gurkul Marg SFS, Mansarovar, Jaipur-302019, Rajasthan, India 

E mails: poonamicg@gmail.com, kalpana.agarwal@iisuniv.ac.in 
 

  

ABSTRACT 

A drought is a period when abnormal dry weather conditions continue for a long period of time. This is due to lack of 

adequate rainfall which reduces soil moisture or ground water. Scarcity of water has drastic effect on the plant 

productivity. Drought not only damages crops but also livestock and other activities of human. Plants survive in 

drought condition by acclimatizing morphologically, biochemically and physiologically. Low molecular weight 

osmolytes like proline and glycine betaine are necessary factors for cellular function under drought stress. Proline and 

Glycine betaine are known as stress metabolites and they protect plants from drought stress by osmoregulation. 

Grewia species grow well in arid conditions suggesting their drought tolerant capacity. The present study therefore 

focusses on biochemical estimation of proline and glycine betaine in Grewia species to establish their drought tolerant 

nature andinvestigate the plant productivity. The experiments were comparative between drought leaf samples and 

post rain leaf samples of Grewia asiatica and Grewia tenax. It was observed thatin drought leaf samples proline 

concentration was very high (9.6 mg/ml) in Grewia tenax in comparison to Grewia asiatica (1.6 mg/ml) whereas in 

post rain leaf samples of both the species proline concentration was equal (1.2 mg/ml). The concentration of Glycine 

betaine also increased in response to drought stress, but not to the level of proline. Moreover the increase was 

significant only in G. tenax 
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Introduction 

Agricultural crops are affected by abiotic stress and it is 

a major problem for the farmers. In arid regions, drought 

stress is a grave hindrance in the productivity. During 

drought plants have to keep potential energy of water to 

tolerate moisture content and turgor pressure as these are 

helpful in development of plants. Soil solutes or formation of 

compatible solutes rise up the osmotic potential of cell by 

this preservation process. Accumulation of osmolytes such as 

proline, glycine betaine, etc. helps maintaining cell water 

status, sub-cellular structures and protecting membranes and 

proteins from the denaturing effects of the osmotic stress and 

provide protection to cells against dehydration (Ashraf and 

Foolad, 2007). Drought stress is one of the major abiotic 

stress in arid and semi-arid areas of Rajasthan. It adversely 

affect growth and production of various crops and trees 

(Ashraf, 2010). Not only in Rajasthan, but worldwide water 

deficit situation is an environmental factor which severely 

affect the development of plant. Therefore, scarcity of water 

is a most serious threat to food security. However, for the 

survival in drought situation, plants take up various strategies 

like drought escape, drought avoidance, drought tolerance 

and embolism. (Farooq et al., 2009; Vilagrosa et al., 2012 

and Abobatta, 2019). According to (Choat et al., 2012), it 

was reported that drought induced embolism, is the main 

cause of death in woody plants due to blockage of xylem 

vessels by air bubble or cavity. 

Under abnormal climatic conditions plants protect 

themselves from different types of stresses by producing 

compatible solutes. They provide not only protection for 

plants but also plays an important function to regulate 

protective cell membranes, cellular osmosis, enzymatic 

activity and stabilizing proteins and scavenging reactive 

oxygen species (ROS) (Gill & Tuteja, 2010). These solutes 

are organic in nature, small water soluble compounds which 

remain inactive in favorable environmental condition 

(Yancey et al., 1982; Tarczynski et al., 1993; Holmström et 

al., 1996). These osmolytes provide protection from a stress 

even when they are in minute quantity (Hayashi & Murata, 

1998; Bajaj et al., 1999). 

Glycine Betaine is synthesized not only in plants but 

also in microorganisms (Gorham, 1995; Sakamoto & Murata, 

2000; Sakamoto & Murata, 2002; Chen & Murata, 2002, 

2008) under adverse environmental conditions such as low or 

high temperature, salinity. Genetic engineering for synthesis 

of GB may provide more importance in this field of research 

(Sakamoto & Murata, 2000, 2001). GB have separate 

positive and negative groups associated with quaternary 

ammonium, which makes it a more organized compatible 

solute (Rudulier et al., 1984). GB also maintains a hydration 

shell around the protein molecule to protect it from structural 

degradation during stress. Glycine Betaine is known to 

protect PS II against photoinhibition during cold, salinity and 

drought stress (Deshnium et al., 1995; Deshnium et al., 1997; 

Allakhverdiev et al., 2007). It also preserves movement of 

macromolecules, cell membrane integrity and protect 

reproductive organs against drought stress. 
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Proline is an important amino acid it helps to recover 

the loss of water in cells during stress because of its 

antioxidant property (Huang et al., 2000). Proline 

accumulation was firstly reported in wilted perennial rye 

grass (Kemble & MacPherson, 1954). Accumulation of 

proline is also very significant in higher plants during 

drought stress (Slabbert & Kruger, 2014; Tabot & Adam, 

2014) and same was reported by (Abdelhamid et al., 2013; 

Semida et al., 2014) in salt stress. Activities of different 

enzymes are enhanced by proline and it also maintains the 

native state of protein (Sharma & Dubey, 2005; Mishra & 

Dubey, 2006). During drought or water deficit condition the 

production of proline may increase and it act as a metal 

chelator, an antioxidant defense molecule and a signaling 

molecule to prevent electrolyte leakage or oxidative burst in 

plants. Proline is also known to enhance growth of plants 

promoting the nutrient absorption, especially of K
+
, Ca

+
, P

+
 

and N
+
. 

Grewia species belonging to family Tiliaceae prefers 

hot and dry environment specially during fruiting. Grewia 

tenax is also known as white cross berry, phalsa cherry, 

gondni etc. It is a branched shrub or small tree up to 2 m tall. 

Popularly it is eaten as a fruit in India. In Jaipur it is found 

growing wild in rocky areas of Nahargarh. Grewia asiatica’s 

common name is phalsa. Its fruits have many medicinal 

properties like astringent, cooling, and stomachic etc. It can 

very easily be grown on poor soils. Loam soils are 

considered best for it. It makes good growth even under 

scanty irrigation conditions.  

As already mentioned, proline and glycine betaine are 

known stress metabolites, Grewia being tolerant to drought 

stress was taken in the present study to analyse the effect of 

drought on the levels of proline and glycine betaine. 

Biochemical estimations of proline and glycine betaine were 

conducted for both post rain and drought samples to figure 

the out exact the mechanism involved in combatting drought 

stress which may be of use to induce stress tolerance in other 

sensitive trees.  

Materials and Methods 

Estimation of Proline and Glycine betaine was done 

according to standard protocol given by (Bates et al., 1973) 

and (Greive& Grattan,1983) respectively. In present study 

leaves of Grewia tenax and Grewia asiatica were collected at 

mid noon, in between 11 A.M. to 1 P.M. from semi-arid 

forests like Jhalana and Nahargarh sanctuary, of Jaipur 

district, in the month of May and September which pertains 

to drought and post rains samples respectively.  To 

authenticate the results the samples were collected from 50 

trees separately. The study is comparative and the leaves 

were therefore collected post rainy seasons and during 

extreme dry weather conditions. Biochemical estimations for 

both post rain and drought samples were conducted. Glycine 

betaine and proline was estimated in all the four leaf samples 

separately i.e. Grewia tenax (drought and post rains samples) 

and Grewia asiatica (drought and post rains samples). 

Analysis of Glycine betaine Concentration  

Procedure 

Glycine betaine is found naturally in several plants. It is 

a neutral chemical compound which act as an osmoprotectant 

and hence guard the plant from abiotic stress such as drought. 

Estimation of Glycine betaine was done by fine powder of 

dry leaf material. In a conical flask 20 ml deionized water is 

added in 0.5 gm. leaf samples (G. tenax and G. asiatica) and 

placed for 48 hours at 25
o
C in a vortex shaker. Until further 

investigation received testers were strained and kept in 

freezer.  In the ratio of 1:1 defrosted extract were diluted with 

2N sulphuric acid. Take 0.5 ml part of aliquot in test tube and 

put the test tube in ice cold water for one hour. Measure 0.2 

ml cold potassium iodide-iodine reagent to add in the 

solution and gently mixed with the help of vortex shaker. 

Obtained testers were kept for 16 hours at 0-4
o
C. 16 hours 

later the testers were transferred in centrifuge at 0
o
C for 

centrifugation for 15 minutes at 10,000 rpm. Take cautiously 

supernatants of both the plant testers with 1 ml micropipette. 

Tubes should be kept cold until the periodite complex is 

parted from acidic medium because solubility of the 

periodite complexes in the acid reaction mixture increases 

prominently with temperature. 9ml of 1, 2- dichloro ethane 

was added to dissolve these periodite crystals. Samples were 

then again transferred to vortex shaker for complete 

solubility in developing solvent for 2.0 to 2.5 hours. On UV-

visible spectrophotometer absorbance were measured at 365 

nm. In 2N sulphuric acid reference standards of glycine-

betaine (50-200 µg/ml) were prepared and followed the 

above process which was used for tester estimation. 

Analysis of Proline Concentration 

Procedure 

Take 0.5 gm of leaf sample with 10 ml of 3% aqueous 

sulphosalicyclic acid and prepare a homogenizing solution 

and then filter it. 2 ml of filtrate was taken in a test tube and 

add 2ml of acid ninhydrin and glacial acetic acid. After 

mixing kept the liquid in boiling water bath for heating for 1 

hour. Place the test tube in ice bath to terminate the reaction. 

Add 4 ml of toluene just after cooling and stir for 20-30 

seconds. After stirring toluene layer was formed which was 

separated and  place the test tube at room temperature. Red 

colour developed and transmission of light was measured at 

520 nm by spectrophotometer. Pure proline is used to run a 

series of standard. Make a standard curve and find out the 

amount of proline in the leaf samples. 

Result 

Proline and glycine betaine content increased 

significantly in Grewia tenax. Increase in proline 

concentration was drastic to the extent of 8 times in 

comparison to that of post rain samples. In post rain leaf 

samples of Grewia tenax, proline concentration was 1.2 

mg/ml where as in drought leaf samples it was 9.6 mg/ml. 

There was a raise in Glycine betaine content also in drought 

conditions in Grewia tenax but the results were not as 

appeasing as that of proline content. In post rain leaf samples 

of Grewia tenax Glycine betaine concentration was 5.7 

mg/ml which increased to 9.8 mg/ml in drought leaf samples 

accounting to only 1.71 times boost. 

In Grewia asiatica, rise in proline and glycine betaine 

were not significant enough. It was 1.33 times in both the 

cases. The results are thus indicative of the idea that Grewia 

tenax with enormous proline accumulation is greatly adapted 

to drought stress in comparison to Grewia asiatica. (Table1; 

Figure1) 
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Discussion 

The improvement in drought tolerance capacity of 

plants is of utmost importance todo away with future threats 

to foods security especially in the present scenario where 

human activities are degrading the environment recklessly. 

India is more prone to these indemnity particularly drought 

due to erratic climatic conditions and dependence on 

agriculture. The plants may beexposedto drought stress at 

any time during their growth period (Anjum et al., 2012). 

As already stated, in present investigation, a significant 

increase in proline and glycine betaine concentration in both 

Grewia cultivars under drought stress was recorded which is 

in accordance with many earlier findings of drought-induced 

accumulation of stress metabolites in both dicots and 

monocots. (Kemble & MacPherson, 1954; Gorham, 1995; 

Ramanjulu & Sudhakar 2000; Sakamoto. & Murata, 2000; 

Chen & Murata, 2002; Sakamoto & Murata, 2002; Khan 

&Gul 2006; Abdelhamid et al., 2013; Semida et al., 2014) 

Proline accumulates generally occurs in cytosol during 

water stress and where it shows major role in cytoplasmic 

osmotic regulation. (Anjum et al., 2011). In our study, higher 

level of proline accumulation in G. tenax over G. asiatica 

would have enabled drought stressed taxa to uphold low 

water potentials. During low water deficit accumulation of 

proline helps plants to persist in the environment 

(Verbruggen & Hermans, 2008). It was investigated many 

times that promotion of photosynthesis, scavenging reactive 

oxygen species and upholding enzymatic action is adjust by 

proline because it controls activity and role of the enzymes in 

plant cells (Ozturk & Demir, 2002; Yamada et al., 2005; 

Jaleel et al., 2007). Storage of proline is an adaptation in 

plants which is generated in water deficit stress (Verbruggen 

& Hermans, 2008). It was described by many reporters that 

proline is an important solute which regulate the enzymatic 

activity & hence, it is necessary compound in metabolic 

reactions in plant cells in dry habitats (Ozturk & Demir, 

2002). It was investigated that extra cellular application of 

proline also helps in regulation of mineral nutrients as well as 

stimulate photosynthesis and scavenging reactive oxygen 

species in drought environment (Jaleel et al., 2007). Proline 

shows adaptive response against adverse environmental 

condition, in higher plants as well as in marine invertebrate 

and microorganisms like eubacteria, protozoa and algae 

(Delauney and Verma, 1993). There were number of studies 

which suggested the positive relation of proline storage under 

stressed condition stress (Rhodes et al., 1986; Kholet al., 

1991; Chiang and Dandekar, 1995; KaviKishor et al., 1995; 

Nanjo et al., 1999; Hong etal., 2000; Székely et al., 2008) 

whereas (Hanson et al., 1979; Bhaskaran et al., 1985; 

Chandler and Thorpe, 1987; Moftah and Michel 1987; Liu 

and Zhu 1997; Maggio et al., 2002; Mani et al., 2002) 

observed negative relationship. Studies have shown that 

proline act as a stabilizing enzyme and compatible osmolyte 

(Low, 1985) subcellular structures (Kandpal and Rao, 1985) 

scavenger of reactive oxygen species (ROS) which formed 

the stable chemical compound for the stressed plant (Floyd 

and Nagy, 1984; Smirnoff and Cumbes, 1989; Smirnoff, 

1993) and membrane (Mansour, 1998). 

It increases the ability of cells to absorb the water more 

efficiently (Shahid et al., 2014, Al-Shaheen et al., 2014). It 

act as an osmotic regulators, antioxidant, transduction 

molecule, increase efficiency of mitochondria and gene 

expression (Szabadosand Savaure, 2009). Proline act as 

desiccated protector for pollen and seeds during the 

developmental stages of plants. The accumulation of proline 

in various parts of the plant is controlled by biosynthesis, 

degradation and cellular transport pathways. Studies 

suggested that due to its property of selective compatible 

solute transporter it is used in production of abiotic resistant 

varieties of plants. (Armengaud et al., 2004). 

The accumulation or degradation of proline shows that 

proline is a different type of amino acid (Yu et al.,1983; 

2014). When higher plant undergoes to drought and salinity 

stress, proline accumulation is a common process in them 

and analysis of proline is an issue for researchers from since 

20 years (Stewart and Larher, 1980; Thompson, 1980; 

Stewart, 1981; Hanson and Hitz, 1982; Samaras et al., 1995; 

Taylor 1996; Rhodes et al., 1999). During the salinity stress 

accumulation of proline starts in leaves (Stewart and Lee, 

1974; Briens and Larher, 1982; Treichel, 1986) where as it is 

accumulated in leaf tissue, shoot apical meristem, desiccating 

pollen and root apical region during in drought stress 

(Barnett & Naylor, 1966; Boggess et al., 1976; Jones et al., 

1980). Proline act as protective layer for cell membrane and 

proteins during ion and heat stress (Pollard and Wyn, 1979; 

Paleg et al., 1981 & Nash et al., 1982). Studies suggested 

that proline act as a protein compatible hydro tope (Srinivas 

and Bal-asubramaniam, 1995). The production of proline 

depends upon the degradation or metabolism of proline. 

Glycine betaine accumulation has also been observed in 

the study in response to drought stress, although the rise was 

less than that of proline. Under abiotic stress accumulation of 

GB and efficient yield is correlated (Smirnoff & Stewart, 

1985; Ibrahim & Aldesuquy, 2003; Giri, 2011).GB 

accumulates and/or synthesis in plant tissues, have been 

linked with the development and existence of plants, 

boostingup of stress responsive genes, membrane 

equilibrium, osmoregulation of the cytosolic partitions, ROS 

scavenging, buffering of redox potential, that respond to the 

metabolism dysfunctions caused by stress. In plant families 

like Asteraceae, Chenopodiaceae, Poaceae and Solanaceae 

GB is widespread during stress (Jones &Storey, 1981).  

Under abiotic stress glycinebetaine (GB) is reported to 

accumulate in variety of living organisms. The reports of 

other investigators have undoubtedly shown that 

plantsknown to accumulate GB naturally grow well under 

drought and saline environment. The fact is even established 

by studies of some of the scientist who observed radical 

improvement in   growth and survival rate of plants under 

drought stress, with the spray of chemicals having GB at the 

optimum concentrations in soybean fields (Roychoudhury 

and Banerjee, 2016) by increasing photosynthetic 

productivity, enlargement of leaf area, nitrogen fixation and 

seed production (Makela et al., 1996). Another study 

suggesting the ROS scavenging role of GB in perennial 

grasses Alopecurus pratensis and Holcus lanatus (Sui et al., 

2012; Gargallo-Garriga et al., 2015) lays the emphasis on its 

role as osmo protectant (Wang et al., 2010; Giri, 2011) 

reported an increase in activity of enzymes for GB synthesis, 

betaine aldehyde dehydrogenase and choline monooxygenase 

in chloroplast stroma in response to salt and water stress 

which adds up to the fact of role of glycine betaine in stress 

tolerance. Wide-ranging work on GB has submitted its 

diverse roles in plants. Role of GB in defend against enzyme 

activity, destruction of membrane, photosynthesis and loss of 

P. Sharma and K. Agarwal 
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productivity, transcriptome changes and regulation of ROS 

detoxification have been established in Oryza sativa (Alia 

and Murata, 1998) Nicotiana tabaccam (Holmström et al., 

2000); Solanum tuberosum (Ahmad et al., 2008).  

Advanced indications advise the involvement of 

differentially expressing endogenous genes in GB facilitated 

stress tolerance in plants. Further work would found whether 

the transcriptome changes are uninterrupted aims of GB or 

are creation of metabolic adjustment in transgenic plants. 

(Roychoudhury and Banerjee, 2016).  To defend the 

membrane structures the role of GB in declining the level of 

malondialdehyde (MDA) has been recently described in the 

leaves of Kandelia obovata and Aegicerascor niculatum 

showing drought stress (Guan et al., 2015).  

The results of this study provide evidence that drought 

tolerance in these local traditional trees could be important 

for improving the variety of other tree species. It is also helps 

in further research work related to drought tolerant taxa and 

provide the ideas for sustainable agriculture development.  

Summary and Conclusions 

To respond several environmental stresses and in many 

processes of growth proline is involved in plants. Progressive 

increase of proline to avoid stress is a recognized 

information, and different roles have been suggested for 

proline like as an energy source and/or as an osmolyte and/or 

as an ROS scavenger. But still importance of proline 

accumulation needs more investigation because none of these 

functions has been demonstrated in relation to date and 

adaptation. Proline is associated in flower and embryo 

development, flower transition and in other developmental 

processes has been identified. For instance in flower 

transition proline may act as a signal molecule, on the other 

hand during flower, embryo and in other developmental 

processes it maintained the energetic needs of quickly 

dividing or elongating cells. Therefore, proline is still a query 

for scientists. A particularly exciting area of future work will 

be separating the signaling cascades in the developmental 

processes as well as stress responses proline has been related 

with, and detecting and explaining any possible cross-talk 
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Table 1: Results of proline and glycine betaine for both the post rain and drought samples are shown in following table: 

Grewia tenax Grewia asiatica 

Stress metabolites Post Rain 

Samples 

Drought 

Samples 

Increase in 

drought sample 

in comparison 

to post rain leaf 

samples 

(X
a
) 

Post Rain 

Samples 

Drought 

Samples 

Increase in 

drought sample 

in comparison to 

post rain leaf 

samples 

(X
a
) 

Proline (mg/ml) 1.2 9.6 8.00 1.2 1.6 1.33 

Glycine betaine 

(mg/ml) 
5.7 9.8 1.71 0.3 0.4 1.33 

a
Increase in times  

 

 
Fig. 1: Relative proline and Glycine betaine content in leaves 
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